Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.214
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621138

RESUMO

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Assuntos
Arecaceae , Óleos Industriais , Ecossistema , Florestas , Biodiversidade , Agricultura , Árvores , Óleo de Palmeira , Conservação dos Recursos Naturais
2.
Plant Cell Rep ; 43(4): 107, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558250

RESUMO

KEY MESSAGE: EgMADS3, a pivotal transcription factor, positively regulates MCFA accumulation via binding to the EgLPAAT promoter, advancing lipid content in mesocarp of oil palm. Lipids function as the structural components of cell membranes, which serve as permeable barriers to the external environment of cells. The medium-chain fatty acid in the stored lipids of plants is an important renewable energy. Most research on MCFA production in plant lipid synthesis is based on biochemical methods, and the importance of transcriptional regulation in MCFA synthesis and its incorporation into TAGs needs further research. Oil palm is the most productive oil crop in the world and has the highest productivity among the main oil crops. In this study, the MADS transcription factor (EgMADS3) in the mesocarp of oil palm was characterized. Through the VIGS-virus induced gene silencing, it was determined that the potential target gene of EgMADS3 was related to the biosynthesis of medium-chain fatty acid (MCFA). Transient transformation in protoplasts and qRT-PCR analysis showed that EgMADS3 positively regulated the expression of EgLPAAT. The results of the yeast one-hybrid assays and EMSA indicated the interaction between EgMADS3 and EgLPAAT promoter. Through genetic transformation and fatty acid analysis, it is concluded that EgMADS3 directly regulates the mid-chain fatty acid synthesis pathway of the potential target gene EgLPAAT, thus promotes the accumulation of MCFA and improves the total lipid content. This study is innovative in the functional analysis of the MADS family transcription factor in the metabolism of medium-chain fatty acids (MCFA) of oil palm, provides a certain research basis for improving the metabolic pathway of chain fatty acids in oil palm, and improves the synthesis of MCFA in plants. Our results will provide a reference direction for further research on improving the oil quality through biotechnology of oil palm.


Assuntos
Arecaceae , Arecaceae/genética , Arecaceae/metabolismo , Ácidos Graxos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes e Vias Metabólicas , Óleo de Palmeira/metabolismo
3.
Med J Malaysia ; 79(Suppl 1): 82-87, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38555890

RESUMO

INTRODUCTION: The palm oil (PO) industry is one of the most important sectors in the Malaysian economy. Workers at PO mills are, however, at risk for a number of health and safety issues, including heat stress, as the PO is one of the industries with high heat exposure. Heat stress occurs when a person's body cannot get rid of excess heat. Heat stress can result in heat cramps, heat exhaustion, heat rash, and heat stroke. It also results in physiological and psychological changes that can have an impact on a worker's performance. Therefore, this study aimed to evaluate the impact of heat stress on health-related symptoms and physiological changes among workers in a PO mill. MATERIALS AND METHODS: This cross-sectional study was conducted in a PO mill located in Mukah, Sarawak, Malaysia. Thirty-one workers from the four workstations (sterilizer, boiler, oil, and engine rooms) were selected as the respondents in this study. Wet Bulb Globe Thermometer was used in this study to measure the environmental temperature (WBGTin). Body core temperature (BCT), blood pressure (BP), and heart rate (HR) were recorded both before and after working in order to assess the physiological effects of heat stress on workers. A set of questionnaires were used to determine sociodemographic characteristics of the respondents and their symptoms related to heat stress. Data were then analyzed using SPSS Ver28. RESULTS: The WBGTin was found to be above the ACGIH threshold limit value of heat stress exposure in the engine room, sterilizer, and boiler workstations (>28.0°C). Additionally, there was a significant difference in the worker's BCT in these three workstations before and after work (p<0.05). Only the systolic BP and HR of those working at the boiler workstation showed significant difference between before and after work (p<0.05). The most typical symptoms that workers experience as a result of being exposed to heat at work include headache and fatigue. However, statistical analysis using Spearman Rho's test showed that there is no correlation between heat stress level with physiological changes and health-related symptoms among study respondents (p>0.05). CONCLUSION: Results of the present study confirmed that workers in PO mill were exposed to high temperatures while at work. Although the evidence indicates the physiological parameters in general are not significantly affected while working, it also demonstrated that worker's body adapts and acclimates to the level of heat. Even so, precautions should still be taken to reduce future heat exposure. It is recommended that a physiological study be carried out that focuses on cognitive function impairment to support the evidence regarding the effects of heat stress on PO mill workers.


Assuntos
Transtornos de Estresse por Calor , Exposição Ocupacional , Humanos , Malásia/epidemiologia , Óleo de Palmeira/efeitos adversos , Estudos Transversais , Temperatura Alta , Resposta ao Choque Térmico , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/etiologia , Transtornos de Estresse por Calor/diagnóstico
4.
J Oleo Sci ; 73(4): 489-502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556283

RESUMO

Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.


Assuntos
Antioxidantes , Hidrogéis , Antioxidantes/farmacologia , Óleo de Palmeira/química , Óleo de Coco/química , Escherichia coli , Staphylococcus aureus , Emulsões/química , Antibacterianos/farmacologia , Compostos Fitoquímicos
5.
Nature ; 627(8002): 116-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355803

RESUMO

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Assuntos
Biodiversidade , Metabolismo Energético , Cadeia Alimentar , Floresta Úmida , Animais , Artrópodes/metabolismo , Bactérias/metabolismo , Aves/metabolismo , Sequestro de Carbono , Fezes , Fungos/metabolismo , Indonésia , Oligoquetos/metabolismo , Compostos Orgânicos/metabolismo , Óleo de Palmeira , Borracha , Solo/química , Clima Tropical
6.
Artigo em Inglês | MEDLINE | ID: mdl-38422382

RESUMO

Glycidyl esters (GEs) and 3-monochloropropanediol esters (3-MCPDEs) are process contaminants commonly found in refined edible oils which are often added to infant formulas. The Taiwan Food and Drug Administration (TFDA) launched regulations for GEs in infant formulas that went into effect on 1 July 2021. To investigate levels of GEs and 3-MCPDEs in infant formula powder, 45 products were sampled and analysed during 2020-2021. The contents of GEs and 3-MCPDEs in formulas of different brands significantly varied, but their concentrations in all of the formulas complied with European Union (EU) regulations. Infant formulas containing palm oil had significantly higher 3-MCPDE levels in both extracted oils and milk powder than those without palm oil. Concentrations of GEs and 3-MCPDEs in infant formula powder and extracted oils were significantly lower in products from Europe than those from Australia and New Zealand. Infants aged 0-1 years in Taiwan who consumed only infant formula showed a margin of exposure (MoE) exceeding 25,000. Mean consumer exposures to 3-MCPDEs stayed below the tolerable daily intake (TDI), while high exposures at the 95th percentile (P95) exceeded the TDI by 1.7-fold. Herein, we present the changing trends in the risk assessment results of infant formula across various countries in the decade. Implementation of regulations and mitigation strategy effectively reduced the risk of infants being exposed to GEs and 3-MCPDEs through infant formula.


Assuntos
Fórmulas Infantis , Propilenoglicóis , alfa-Cloridrina , Lactente , Humanos , Óleo de Palmeira , Fórmulas Infantis/análise , alfa-Cloridrina/análise , Ésteres/análise , Pós , Taiwan , Contaminação de Alimentos/análise , Medição de Risco , Óleos de Plantas/análise
7.
J Sep Sci ; 47(4): e2300842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403445

RESUMO

The study explored ferulic acid extraction from palm empty fruit bunch (EFB) fiber using deep eutectic solvent (DES) of chlorine chloride-acetic acid as the extraction medium and the way to recover and recycle the DES thereafter. Antisolvent was added to selectively precipitate the ferulic acid, which was recovered by filtration thereafter. Recycling the DES without further purification led to increased ferulic acid yield with each subsequent extraction, likely due to retained ferulic acid. The retained ferulic acid and other impurities could be removed by precipitation brought upon by the addition of a second antisolvent. 1H nuclear magnetic resonance revealed that there was no excess ferulic acid in the recycled DES-treated with two types of antisolvents (ethanol and water). The yield of ferulic acid increased from 0.1367-0.1856 g/g when treated with only one antisolvent to 0.1368-0.2897 g/g with two antisolvent treatments. Oil droplets were also observed in the DES upon the addition of antisolvent 2, with recovered oil ranging from 0.6% to 3%. The study emphasized the significance of using DES as an extraction medium for ferulic acid from oil palm EFB fiber and the method to recycle the DES for subsequent processes.


Assuntos
Ácidos Cumáricos , Solventes Eutéticos Profundos , Frutas , Óleo de Palmeira , Carboidratos
8.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338758

RESUMO

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Assuntos
Arecaceae , Peróxido de Hidrogênio , Catalase/metabolismo , Filogenia , Peróxido de Hidrogênio/metabolismo , Transcriptoma , Arecaceae/genética , Arecaceae/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Óleo de Palmeira , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338979

RESUMO

Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.


Assuntos
Arecaceae , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos/metabolismo , Óleo de Palmeira , Cromatografia Líquida , Miristatos/metabolismo , Arecaceae/genética , Arecaceae/metabolismo , Espectrometria de Massas em Tandem , Ácidos Graxos Insaturados/metabolismo , Ácido Palmítico/metabolismo , Perfilação da Expressão Gênica , Ácidos Esteáricos/metabolismo , Óleos de Plantas/metabolismo
10.
Food Res Int ; 179: 113942, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342517

RESUMO

This study aimed to compare the frying performance of palm oil (PO) and high oleic sunflower oil (HOSO) during frying aquatic products. The quality change and frying performance of HOSO and PO during frying of fish cakes were investigated. The oxidation and hydrolysis products of both oils were explored by the nuclear magnetic resonance technique. The results showed that the color deepening rate of PO was higher than that of HOSO. After 18 h of frying, the total polar compound content of PO and HOSO reached 25.67% and 27.50%, respectively. HOSO had lower degree of oxidation than PO after 24 h of continuous frying. The polyunsaturated fatty acid content in HOSO and PO significantly decreased. The oleic acid content in HOSO remained above 80% during the frying process. The major aldehydes in both oils were (E, E)-2,4-alkadienals and n-alkanals and glycerol diesters (DAGs) were abundant in PO. Furthermore, the addition of fish cakes had slight effect on the quality of the frying oil. Therefore, HOSO is an appropriate candidate for frying owing to its excellent frying stability and nutritional value.


Assuntos
Culinária , Óleos de Plantas , Animais , Óleo de Girassol , Óleo de Palmeira , Culinária/métodos , Espectroscopia de Ressonância Magnética
11.
Environ Sci Pollut Res Int ; 31(11): 16940-16957, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326685

RESUMO

The applications of polysulfides derived from natural plant oil and sulfur via the inverse vulcanization in the removal of heavy metals from aqueous solutions suffered from their low porosity and scarce surface functionality because of their hydrophobic surfaces and bulk characteristics. In this study, polysulfides from sulfur and palm oil (PSPs) with significantly enhanced porosity (13.7-24.1 m2/g) and surface oxygen-containing functional groups (6.9-8.6 wt.%) were synthesized with the optimization of process conditions including reaction time, temperature, and mass ratios of sulfur/palm oil/NaCl/sodium citrate. PSPs were applied as sorbents to remove heavy metals present in aqueous solutions. The integration of porosity and oxygen modification allowed a fast kinetic (4.0 h) and enhanced maximum sorption capacities for Pb(II) (218.5 mg/g), Cu(II) (74.8 mg/g), and Cr(III) (68.4 mg/g) at pH 5.0 and T 298 K comparing with polysulfides made without NaCl/sodium citrate. The sorption behaviors of Pb(II), Cu(II), and Cr(III) on PSPs were highly dependent on the solution pH values and ionic strength. The sorption presented excellent anti-interference capability for the coexisting cations and anions. The sorption processes were endothermic and spontaneous. This work would guide the preparation of porous polysulfides with surface modification as efficient sorbents to remediate heavy metals from aqueous solutions.


Assuntos
Metais Pesados , Sulfetos , Poluentes Químicos da Água , Porosidade , Cloreto de Sódio , Chumbo , Óleo de Palmeira , Citrato de Sódio , Metais Pesados/química , Água , Enxofre , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química
12.
J Sci Food Agric ; 104(7): 3958-3970, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38284502

RESUMO

BACKGROUND: As a by-product of the palm oil industry, palm stearin is often overlooked despite having several beneficial properties, such as excellent stability, which is critically essential to meet the demand of the global food trend in producing safer processed food. Specifically, deep frying of food is often associated with the production of toxic compounds that could potentially migrate into the food system when oils are degraded under continuous heating. The incorporation of palm stearin is regarded as a cost-effective and efficient method to modify the fatty acid composition of oils, enhance the frying qualities and lower the degradation rate. RESULTS: This study blended 5% and 10% palm stearin into palm oil to investigate the deep-frying performance and impact on food quality. Increasing the palm stearin content improved the frying oil's oxidative and hydrolytic stability, evidenced by reduction of total polar material, free fatty acid and total oxidation value. Addition of palm stearin increased the slip melting point which improved the oil's oxidative stability but no significant increase in oil content of instant noodles was observed. Scanning electron microscopy and fluorescence microscopy showed the formation of larger pores in the noodle structure that facilitated oil retention. CONCLUSION: Blending palm stearin into frying oil enhanced the frying stability and minimally affected the oil uptake in instant noodles. This article presents the viability of blending palm stearin into frying oils to develop longer-lasting frying oils. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ácidos Graxos , Óleos de Plantas , Óleo de Palmeira/química , Óleos de Plantas/química , Ácidos Graxos/química , Ácidos Graxos não Esterificados , Oxirredução
13.
J Oleo Sci ; 73(1): 65-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171732

RESUMO

Lyotropic liquid crystals (LLCs) are interesting wall-materials for encapsulation technology, in which monoacylglycerols (MAGs) are considered as potential ingredient for LLC formulation. This study, therefore, applied palm oil-based MAGs to encapsulate Gac fruit oils and compared the effect of two drying methods (freeze-drying and spray-drying) on the quality of products during storage. Wall-materials were prepared by ultrasound dispersing MAGs/water mixtures (40/60, w/w) into Pluronic solution (2%, w/w) to formulate LLC dispersions. Then, Gac fruit oils were encapsulated by freeze-drying and spray-drying. Various technologies were applied to characterize the properties of dispersions, the encapsulated powder morphology and the loading capacity. Obtained results showed that LLC dispersions made of palm oilbased MAG were micro- and nano-emulsions which were very convenient for encapsulating Gac fruit oils. For both drying methods, ß-carotene of Gac fruit oils was successfully entrapped by MAGs with a high loading capacity (200 µg ß-carotene/g powder). The degradation of encapsulated ß-carotene after four storage weeks was 10 - 40% and freeze-dried samples showed a better protection effect in comparison to spray-dried samples.


Assuntos
Frutas , beta Caroteno , Frutas/química , beta Caroteno/análise , Óleo de Palmeira/análise , Monoglicerídeos , Pós , Óleos/química , Liofilização
14.
Sci Rep ; 14(1): 1836, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246913

RESUMO

The production of oil palm (Elaeis guineensis) in Southeast Asia is vital to the economies of Indonesia and Malaysia. Both fertilisers and pesticides used in palm production can contain elevated concentrations of Trace Elements (TEs) which may accumulate in soils and leaf tissues of plants. We hypothesised that leaves from oil palms may be deficient in essential elements, while containing elevated concentrations of non-essential TEs commonly found in agrichemicals. Samples of plant materials (leaves and fruitlets) were collected from active and former plantations in Sumatra, Indonesia, and analysed for essential and non-essential elements. Indonesian palm oil samples were sourced in New Zealand and their elemental concentrations determined. Leaf materials from both active and abandoned production sites were deficient in N, K, S and Mo, while leaf materials from abandoned sites were deficient in P. These deficiencies may have been a contributing factor to the abandonment of production at these sites. Concentrations of non-essential elements were below or comparable to average plant concentrations and no evidence of contamination was found in plant tissues. Palm oil contained low concentrations of TEs, which did not pose any toxicity risks. However, Na and Al were present in concentrations of 1198 and 159 mg kg-1 respectively, which were higher than have been previously reported. Tropical oil palm production could benefit from the determination of bioaccumulation factors for fertiliser contaminants in E. guineensis, to limit the transfer of contaminants to plants and products if increased fertiliser applications were used to correct nutrient deficiencies.


Assuntos
Arecaceae , Oligoelementos , Fertilizantes , Óleo de Palmeira , Agroquímicos , Bioacumulação
15.
J Food Sci ; 89(2): 1035-1046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193170

RESUMO

In our rapidly changing world, where consumers' expectations for healthy food are on the rise, the edible oil content in packaged foods has become a central focus. Among various types of oils, palm oil is often regarded as one of the most contentious. This research study aimed to identify the types of fats present in packaged food products in Türkiye and examined the reasons for their utilization. A total of 1380 packaged food items, classified into 11 categories, were scrutinized, and the types of oils within their ingredients were classified using principal component analysis and hierarchical cluster analysis. The study's results have determined that among packaged food products available in Türkiye, 50.1% contain palm oil, 30.4% contain sunflower oil, 16.4% contain canola oil, 14.9% contain cottonseed oil, 17.9% contain cocoa oil, and 12.6% contain coconut oil. In particular, it was determined that palm oil was used in 91% of bakery products, 81% of margarine and shortening products, and 71.3% of ice creams. Consequently, the data obtained in the context of ongoing debates regarding the fat content in packaged foods, especially concerning palm oil usage, will make a valuable contribution to the literature.


Assuntos
Margarina , Óleos de Plantas , Óleo de Palmeira , Análise de Componente Principal , Turquia , Óleo de Coco
16.
Environ Res ; 248: 118282, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295974

RESUMO

The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.


Assuntos
Braquiúros , Carvão Vegetal , Animais , Óleo de Palmeira , Micro-Ondas , Pirólise , Vapor , Resíduos Industriais/análise
17.
Food Res Int ; 177: 113850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225125

RESUMO

Interesterified fats have been used to replace trans-fat in ultra-processed foods. However, their metabolic effects are not completely understood. Hence, this study aimed to investigate the effects related to glucose homeostasis in response to interesterified palm oil or refined palm oil intake. Four-week-old male Swiss mice were randomly divided into four experimental groups and fed the following diets for 8 weeks: a normocaloric and normolipidic diet containing refined palm oil (PO group) or interesterified palm oil (IPO group); a hypercaloric and high-fat diet containing refined PO (POHF group) or interesterified PO (IPOHF group). Metabolic parameters related to body mass, adiposity and food consumption showed no significant differences. As for glucose homeostasis parameters, interesterified palm oil diets (IPO and IPOHF) resulted in higher glucose intolerance than unmodified palm oil diets (PO and POHF). Euglycemic-hyperinsulinemic clamp assessment showed a higher endogenous glucose production in the IPO group compared with the PO group. Moreover, the IPO group showed significantly lower p-AKT protein content (in the muscle and liver tissues) when compared with the PO group. Analysis of glucose-stimulated static insulin secretion (11.1 mmol/L glucose) in isolated pancreatic islets showed a higher insulin secretion in animals fed interesterified fat diets (IPO and IPOHF) than in those fed with palm oil (PO and POHF). Interesterified palm oil, including in normolipidic diets, can impair insulin signaling in peripheral tissues and increase insulin secretion by ß-cells, characterizing insulin resistance in mice.


Assuntos
Resistência à Insulina , Masculino , Animais , Camundongos , Óleo de Palmeira , Óleos de Plantas , Gorduras na Dieta , Secreção de Insulina , Ácidos Graxos/análise , Dieta Hiperlipídica/efeitos adversos , Glucose
18.
Gene ; 896: 148056, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042217

RESUMO

In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids. In the metabolic processes of mammal, lysophosphatidylcholine acyltransferase 1 (LPCAT1), crucial for phosphatidylcholine remodeling, demonstrates a marked affinity towards palmitic acid (PA). Nonetheless, aspects concerning the cloning, tissue-specific distribution, and affinity of the LPCAT1 gene to diverse oil sources have yet to be elucidated in the large yellow croaker (Larimichthys crocea). Within the scope of this study, we successfully isolated and cloned the cDNA of the LPCAT1 gene from the large yellow croaker. Subsequent analysis revealed distinct gene expression patterns of LPCAT1 across ten different tissues of the species. The fully sequenced coding DNA sequence (CDS) of LPCAT1 spans 1503 bp and encodes a sequence of 500 amino acids. Comparative sequence alignment indicates that LPCAT1 shares a 69.75 % amino acid similarity with its counterparts in other species. Although LPCAT1 manifests across various tissues of the large yellow croaker, its predominance is markedly evident in the liver and gills. Furthermore, post exposure of the large yellow croaker's hepatocytes to varied fatty acids, PA has a strong response to LPCAT1. Upon the addition of appropriate lysolecithin to palm oil feed, the mRNA expression of LPCAT1 in the liver cells of the large yellow croaker showed significant variations compared to other subtypes. Concurrently, the mRNA expression of pro-inflammatory genes il-1ß, il-6, il-8, tnf-α and ifn-γ in the liver tissue of the large yellow croaker decreased. Interestingly, they exhibit the same trend of change. In conclusion, we have cloned the LPCAT1 gene on fish successfully and find the augmented gene response of LPCAT1 in hepatocytes under PA treatment first. The results of this study suggest that LPCAT1 may be associated with liver inflammation in fish and offer new insights into mitigating liver diseases in fish caused by palm oil feed.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Ácidos Graxos , Perciformes , Animais , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Clonagem Molecular , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Mamíferos/genética , Óleo de Palmeira/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , RNA Mensageiro/genética
19.
Environ Manage ; 73(1): 259-273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37667018

RESUMO

The jurisdictional approach concept emerged in response to the widespread failure of sectoral forest conservation projects. Despite its increasing popularity, understanding jurisdictional approach outcomes is challenging, given that many remain in either the formation or implementation stage. Furthermore, diverse stakeholders hold different perspectives on what exactly a jurisdictional approach is intended to pursue. These different perspectives are important to unravel, as having a shared understanding of the outcomes is important to build the critical support needed for it. This study aims to add to the limited evidence with a case study in Sabah, Malaysia, which is committed to addressing a leading deforestation driver (palm oil) through sustainability certification in a jurisdiction. We used Q-methodology to explore stakeholder perceptions, revealing three distinct perspectives regarding what outcomes jurisdictional approaches should pursue. We asked about outcomes achievable within ten years (2022-2032) and considering real-world constraints. We found different perspectives regarding economic, environmental, governance, and smallholders' welfare outcomes. However, we found consensus among stakeholders about some outcomes: (i) that achieving zero-deforestation is untenable, (ii) that issuing compensation or incentives to private land owners to not convert forests into plantations is unrealistic, (iii) that the human well-being of plantation workers could improve through better welfare, and (iv) the free, prior and informed consent given by local communities being required legally. The findings offer insights into key stakeholders' perceptions of the deliverables of jurisdictional approaches and the difficulty of achieving its objectives under real-world constraints.


Assuntos
Conservação dos Recursos Naturais , Florestas , Humanos , Malásia , Óleo de Palmeira
20.
J Nutr ; 154(2): 455-468, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37778509

RESUMO

BACKGROUND: Palm oil (PO) is the most widely utilized plant oil for food production. Owing to the great ecologic problems associated with PO production, sustainably produced fats, such as insect fat, might be a suitable alternative. OBJECTIVES: The hypothesis was tested that fat from Hermetia illucens larvae (HF) compared with PO and soybean oil (SO) has no adverse effects on hepatic lipid metabolism, plasma metabolome, and cecal microbiome in obese Zucker rats. METHODS: Thirty male obese Zucker rats were randomly assigned to 3 groups (SO, PO, HF; n = 10 rats/group) and fed 3 different semisynthetic diets containing either SO, PO, or HF as the main fat source for 4 wk. The effects were evaluated by measurement of liver and plasma lipid concentrations, liver transcriptomics, targeted plasma metabolomics, and cecal microbiomics. RESULTS: Supplementation of HF reduced hepatic triglyceride concentration and messenger ribonucleic acid concentrations of selected genes involved in fatty acid and triglyceride synthesis in comparison to PO (P < 0.05). Pairwise comparison of the Simpson index and Jaccard index showed a higher cecal microbial α- and ß-diversity in rats fed the HF diet than in rats fed the PO diet (P = 0.015 and P = 0.027), but no difference between rats fed the diets with SO or PO. Taxonomic analysis of the cecal microbial community revealed a lower abundance of Clostridium_sensu_stricto_1 and a higher abundance of Blautia, Mucispirillum, Anaerotruncus, Harryflintia, and Peptococcus in rats supplemented with HF than in rats supplemented with PO (P < 0.05). CONCLUSIONS: HF, compared with PO, has liver lipid-lowering effects in obese Zucker rats, which may be caused by a shift in the gut microbial community. Thus, HF might serve as a sustainably produced fat alternative to PO for food production.


Assuntos
Dípteros , Microbioma Gastrointestinal , Ratos , Animais , Triglicerídeos , Óleo de Palmeira , Ratos Zucker , Gorduras na Dieta/farmacologia , Obesidade/metabolismo , Fígado/metabolismo , Óleo de Soja , Dípteros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...